Theory of Josephson Arrays in a Resonant Cavity

نویسندگان

  • E. Almaas
  • D. Stroud
چکیده

We review our previous work on the dynamics of oneand two-dimensional arrays of underdamped Josephson junctions placed in a single-mode resonant cavity. Starting from a well-defined model Hamiltonian, which includes the effects of driving current and dissipative coupling to a heat bath, we write down the Heisenberg equations of motion for the variables of the Josephson junction and the cavity mode. In the limit of many photons, these equations reduce to coupled ordinary differential equations, which can be solved numerically. We present a review of some characteristic numerical results, which show many features similar to experiment. These include self-induced resonant steps (SIRS’s) at voltages V = n Ω/(2e), where Ω is the cavity frequency, and n is generally an integer; a threshold number Nc of active rows of junctions above which the array is coherent; and a timeaveraged cavity energy which is quadratic in the number of active junctions, when the array is above threshold. When the array is biased on a SIRS, then, for given junction parameters, the power radiated into the array varies as the square of the number of active junctions, consistent with expectations for coherent radiation. For a given step, a two-dimensional array radiates much more energy into the cavity than does a one-dimensional array. Finally, in two dimensions, we find a strong polarization effect: if the cavity mode is polarized perpendicular to the direction of current injection in a square array, then it does not couple to the array and no power is radiated into the cavity. In the presence of an applied magnetic field, however, a mode with this polarization would couple to an applied current. We speculate that this effect might thus produce SIRS’s which would be absent with no applied magnetic field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of two-dimensional Josephson arrays in a resonant cavity

We consider the dynamics of a two-dimensional array of underdamped Josephson junctions placed in a single-mode resonant cavity. Starting from a well-defined model Hamiltonian, which includes the effects of driving current and dissipative coupling to a heat bath, we write down the Heisenberg equations of motion for the variables of the Josephson junction and the cavity mode, extending our previo...

متن کامل

Model for a Josephson junction array coupled to a resonant cavity

We describe a simple Hamiltonian for an underdamped Josephson array coupled to a single photon mode in a resonant cavity. Using a Hartree-like mean-field theory, we show that, for any given strength of coupling between the photon field and the Josephson junctions, there is a transition from incoherence to coherence as a function of N, the number of Josephson junctions in the array. Above that v...

متن کامل

Resonant-cavity-induced phase locking and voltage steps in a Josephson array

We describe a simple dynamical model for an underdamped Josephson junction array coupled to a resonant cavity. From numerical solutions of the model in one dimension, we find that ~i! current-voltage characteristics of the array have self-induced resonant steps ~SIRS!, ~ii! at fixed disorder and coupling strength, the array locks into a coherent, periodic state above a critical number of active...

متن کامل

Numerical Calculation of Resonant Frequencies and Modes of a Three-Atom Photonic Molecule and a Photonic Crystal in an External Cavity

In the present paper, resonant frequencies and modes of a three-atom photonic molecule and a photonic crystal placed within a cavity are numerically calculated. First, governing formulation in transverse electric field mode (TE) is obtained using Maxwell equations. Then, an algorithm based on a finite difference scheme and matrix algebra is presented. The algorithm is then implemented in a comp...

متن کامل

Synchronization of underdamped Josephson-junction arrays

Our recent experiments show that arrays of underdamped Josephson junctions radiate coherently only above a threshold number of junctions switched onto the radiating state. For each junction, the radiating state is a resonant step in the current-voltage characteristics due to the interaction between the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003